Только у птиц и млекопитающих, в том числе и у человека, сердце состоит из четырех камер - левого и правого предсердия, а также двух желудочков. Такое строение обеспечивает разделение насыщенной кислородом артериальной и бедной кислородом венозной крови. Один поток, с венозной кровью, направляется в легкие, а другой - с артериальной снабжает весь организм. С энергетической точки зрения такое кровообращение максимально выгодно. Поэтому, по мнению ученых, именно благодаря четырехкамерному сердцу животные научились поддерживать постоянную температуру тела. В отличие от теплокровных у холоднокровных, например амфибий, сердце трехкамерное. С рептилиями дело обстоит сложнее. Они - особая группа. Дело в том, их желудочки разделены перегородкой, но в ней находится отверстие. Вроде четырехкамерное сердце, но не совсем. Не достает одной детали - пленочной перегородки, которая закрывала бы межжелудочковое отверстие и создавала бы полную изоляцию левого и правого желудочка. Такая пленочная перегородка появилась у птиц и млекопитающих значительно позже.
Как возникла эта перегородка, выяснила большая группа американских, канадских и японских ученых под руководством доктора Бенуа Бруно (Benoit G. Bruneau) из Института сердечно-сосудистых заболеваний Гладстона. Авторы работы обнаружили, что перегородка начинает формироваться в том случае, если количество транскрипционных факторов Tbx5−белков, связывающих ДНК и запускающих транскрипцию генов, отвечающих за синтез кардиомиоцитов, неравномерно распределяется в обоих желудочках. Там, где количество Tbx5 начинает убывать, и формируется перегородка.
Доктор Бруно и его коллеги изучали развитие сердца у эмбрионов красноухой черепахи (Trachemus scripa elegans) и ящерицы анолиса каролинского (Аnolis carolinensis). "Нам важно было посмотреть, как формируется межжелудочковая перегородка у эмбрионов того и другого вида. У черепахи, у которой только начинает формироваться четырехкамерное сердце, и у ящерицы с трехкамерным сердцем", - объясняют ученые.
Оказалось, что у черепахи белок Tbx5 распределяется неравномерно. Концентрация этого белка уменьшалась, правда, очень постепенно, от левой к правой части желудочка. А у ящерицы содержание Tbx5 вообще было одинаковым по всему желудочку, поэтому и никакой необходимости в появлении перегородки не было. "Исходя из этого мы решили, что возникновение межжелудочковой перегородки связано с разной концентрацией Tbx5", - рассказывают ученые.
Эксперимент прошел успешно. Оставалось только понять, действительно ли концентрация Tbx5 - причина, а появление перегородки - следствие, или это простое совпадение. Доктор Бруно и его коллеги модифицировали ДНК мышей так, чтобы уровень Tbx5 у них совпал с уровнем Tbx5 у черепахи. Так родились мыши с черепашьим трехкамерным сердцем - без пленки, закрывающей межжелудочковое отверстие. К сожалению, все мышата умерли практически сразу после рождения. Зато благодаря этому опыту ученые смогли понять, что распределение уровня транскрипционного фактора действительно приводит к формированию перегородки, закрывающей межжелудочковое отверстие.
Сам вопрос об эволюции межжелудочковой перегородки очень важен с точки зрения медицины. Дело в том, что у людей врожденные аномалии сердца встречаются очень часто. Как говорит доктор Бруно, примерно один человек из ста рождается с теми или иными сердечными аномалиями. Более того, достаточно часто рождаются дети с трехкамерным сердцем, то есть с одним желудочком, как у амфибий. Большинство таких новорожденных без необыкновенно сложной операции по восстановлению перегородки между желудочками обречены на смерть.
"То, что нам удалось обнаружить, - важный этап в понимании эволюции сердца. Понимание того, как формировалась межжелудочковая перегородка, позволит нам пойти еще дальше. И выяснить, как появляются врожденные дефекты у людей, почему у некоторых эмбрионов не формируется межжелудочковая перегородка, и как можно воздействовать на это процесс", - говорят авторы работы.
Биологи выяснили, как формируются некоторые врожденные пороки сердца
04.09.2009